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Abstract. This paper develops a multivariable integrated evaluation (MVIE) method to measure the overall performance of
climate model in simulating multiple fields. The general idea of MVIE is to group various scalar fields into a vector field and
compare the constructed vector field against the observed one using the vector field evaluation (VFE) diagram. The VFE
diagram was devised based on the cosine relationship between three statistical quantities: root mean square length (RMSL)
of a vector field, vector field similarity coefficient, and root mean square vector deviation (RMSVD). The three statistical
quantities can reasonably represent the corresponding statistics between two multidimensional vector fields. Therefore, one
can summarize the three statistics of multiple scalar fields using VFE diagram and facilitate the intercomparison of model
performances. The VFE diagram can illustrate how much the overall root mean square deviation of various fields is
attributable to the differences in the root mean square value and how much is due to the poor pattern similarity. The MVIE
method can be flexibly applied to full fields (including both the mean and anomaly) or anomaly fields depending on the
application. We also propose a multivariable integrated evaluation index (MIEI) which takes the amplitude and pattern
similarity of multiple scalar fields into account. The MIEI is expected to provide a more accurate evaluation of model
performance in simulating multiple fields. The MIEI, VFE diagram, and commonly used statistical metrics for individual
variables constitute a hierarchical evaluation methodology, which can provide a more comprehensive evaluation on model

performance.

1 Introduction

Climate models play a very crucial role in a variety of climate-related studies, e.g., climate dynamics, the detection and
attribution of climate change, the projection of future climates and environments, and adaptation to future climate change
(IPCC, 2012, 2013). All these studies strongly rely on the performances of climate models. Model evaluation and
intercomparison have become increasingly important, especially because a number of climate models are available at present.
29 modelling groups and 60 climate models are involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5)
and more are expected to be included in its next phase (Eyring et al., 2016). In addition, more and more regional climate

models have been used in regional model downscaling and intercomparison projects (e.g., Fu et al., 2005; Van der Linden
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and Mitchell, 2009; Mearns et al., 2009; Giorgi and Gutowski, 2015). Thus, how to concisely summarize and evaluate model

performance is extremely important for climate model intercomparison, development, and application.

The Taylor diagram provides a very efficient way to summarize multiple aspects of model performance in simulating scalar
fields (Taylor, 2001). Gleckler et al. (2008) introduced a suite of metrics, e.g., decomposed mean square error, and relative
error metrics, which were used to characterize the model performance for various applications. Xu et al. (2016) devised a
vector field evaluation (VFE) diagram, which can be regarded as a generalized Taylor diagram, to evaluate the model
performance in simulating vector fields, such as vector winds, and temperature gradients. Most metrics, e.g., root mean
square error, correlation coefficient, and standard deviation, measure the model performance in simulating an individual
variable (Gleckler et al., 2008). It is a common view that no model performs better than others in every aspect. For example,
among various models, one model can show the best performance in simulating air temperature but may have a poor
performance in simulating precipitation. In this case, how can researchers select the best model if both temperature and
precipitation are important? A popular approach is to show the relative errors of various variables from different models
using a portrait diagram (e.g. Gleckler et al. 2008; Pincus, et al. 2008). The portrait diagram illustrates model errors for each
individual variable and can provide an overview of the model performance in simulating various variables. However, the
portrait diagram cannot give a quantitative evaluation of the overall performance of climate models in simulating multiple
fields. To measure the overall model performance, Gleckler et al. (2008) proposed an exploratory index, termed the model
climate performance index (MCPI), by averaging each model’s relative errors across multiple fields. Note that the MCPI
only considers the root mean square errors (RMSEs) of various fields. The RMSE can be interpreted as a function of the
correlation coefficient and standard deviation (Murphy, 1988; Taylor, 2001; Pincus et al., 2008; Pierce et al., 2009).
Therefore, the RMSE takes both the correlation coefficient and standard deviation into account. However, the RMSE cannot
explicitly measure the correlation coefficient and standard deviation. For example, the same RMSE can correspond to very
different correlation coefficients and standard deviations, especially for large RMSE values.

In this paper, we propose a more comprehensive multivariable integrated evaluation (MVIE) method, which can summarize
multiple statistics of model performance in terms of multiple variables, for climate model evaluation. The general idea is to
group M scalar fields into an M-dimensional vector field with each dimension representing a scalar field. Such a constructed
vector field integrates multiple variables and can be assessed using the VFE diagram. The VFE diagram can concisely
summarize the degree of correspondence between simulated and observed vector fields in terms of multiple statistics (Xu et
al, 2016). Therefore, the VFE diagram can be a powerful tool for the MVIE of model performance. To achieve the goal of
MVIE, in section 2, we generalize the VFE diagram to evaluate M-dimensional vector fields and interpret three statistical
guantities in the VFE diagram from the viewpoint of MVIE. Section 3 presents the approach of MVIE with the VFE diagram.

A summary and discussion are provided in section 4.
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2 Constructing VFE diagram for multidimensional vector fields

Xu et al. (2016) constructed the VFE diagram in terms of 2-dimensional vector fields. There are three statistical
quantities in the VFE diagram, i.e., vector similarity coefficient (VSC), root mean square length (RMSL) of a vector field,
and root mean square vector deviation (RMSVD) between two vector fields. In this section, each quantity will be defined
and interpreted from the viewpoint of MVIE. Thereafter, we will construct the VFE diagram for multidimensional vector
fields.

2.1 Root mean square length of a vector field

Consider two vector fields A and B, which can be spatial fields or temporal fields. Assume that vector fields A and B are
derived from a climate model simulation and observation, respectively. Without loss of generality, vector fields A and B can
be written as a pair of vector sequences:

A; = (a4, a5j, -, Ayj); j=1,2,...,N

B; = (by,byj, .., byj); i=1,2,...,N

Each vector field (A and B) consists of N discrete vectors (in time or/and space). Each vector (A; and B;) has M dimensions.

The norms of vectors A;j and Bj, the intuitive notion of length, are written as:

M 1/2
Int=(Y )

i=1

um{i@

i=1

1/2

The root mean square lengths (RMSLs) for vector fields A and B are respectively defined as:

(1)

)

The square of L, is rewritten as:
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4)

®)

(6)

are the RMS values of the i-th component of the vector fields A and B, respectively. The RMSL of vector field A reflects the
total RMS value across all components of the vector field (Eq. 3). If we break down each variable into its mean and anomaly,
it is easy to prove that the mean square value equals the square of the mean plus variance (Eqs. A2, A3). Thus, the RMSL
can be used to measure the overall mean value and variance of all components of a vector field. If the vector field is grouped

with various scalar fields, the RMSL represents the overall mean value and variance of all scalar fields.



10

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-95, 2017
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 May 2017

(© Author(s) 2017. CC-BY 3.0 License.

2.2 Vector similarity coefficient between two vector fields

In the same as for the vector similarity coefficient (VSC) for 2-dimensional vector fields (Xu et al., 2016), the VVSC for M-
dimensional vector fields can be defined as:

}1A]B

T R s ¥

The normalized vectors are written as:

* Aj * * * . P—
A}-=L—]_(a1}-,a2j,...,an), J—l, 2,...,N

B

B]= _(b1]; 2];"!b1’(4j); j:1’2""’N

With the aid of Egs. (1) and (2), we have

N N

2
DAl => Is;
j=1 j=1

We can also represent Eq. (7) in the following form:

N
1 * *
S

=N 8)

©)

VSC can be mterpreted as the mean of inner products between paired- and normalized-vectors A; and B;. The squared

Euclidean Distance (SED) between A; and B; is defined as follows:

lc

With the aid of Egs. (9) and (10), the sum of all SEDs can be written as:

N
j=1

(10)

2
\
|’ =

j i=1
N M M M
— * 2 % 2 * ok
DANERIEEL)
j=1 \i=1 i=1 i=1
N N
*2 *
=DM+ ) 5| - 2w,
j=1 j=1

With the aid of Eqg. (8), we obtain
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N
1 2
szl—ﬁZM}- (11)
j=1
Given the triangle inequality, 0 < ||C;|| < ||4;]| + || B;]|, we have
2 2 2 2
o<|c|" < (&l + 1B; 1) < 2||4;]|” + 2]|B;]|".
Adding all SEDs together yields
N N N
o< Y lGIP <2 ) lag]*+2 ) |1B;]* = an (12)
=1 j=1 j=1

Substituting Eq. (12) into Eq. (11), we obtain -1 < R, < 1. Thus, the VSC between two M-dimensional vector fields varies
5 from -1 to 1. The VSC reaches it maximum of 1 when each pair of normalized vectors has exactly the same length and

direction, i.e., A;=B; forall i (1 <i<N). The VSC reaches it minimum value of -1 when each pair of normalized vectors has

exactly the same length but points in opposite direction, i.e., Aj=—B; forall i (1 <i <N).

With the aid of Egs. (1) and (2), Eqg. (7) can be written as:

(13)

10 where g,; = /% =1 al.zj and g;,; = %Z?’zlbfj are the uncentered RMS values of the i-th component of vector fields A and

1¢N
~Xi=1@ijbij . . . . . . .
B.R, = N2=1%7 s the uncentered pattern correlation coefficient between the i-th paired components of vector fields A

qi0bi

and B. The uncentered pattern correlation coefficient is a variant of Pearson’s correlation in which the mean values are not
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removed. R, can also be interpreted as the normalized inner product of two N-dimensional vectors a; = (a;; a;, ..., ;)
al’ld bi = (ail, aiz, vy aiN‘):
N
_<albl>_ ijlai}'bij

R .= =
o llallibl (14)
SR TN

The uncentered correlation coefficient can be interpreted as the cosine of the angle between the N-dimensional vectors a; and

bi. Ry increases when the arguments of vectors a; and b; approach each other (Eq. 14). Thus, the similarity coefficient
between two vector fields A and B can be interpreted as a weighted average of uncentered correlation coefficients across all
paired components between two vector fields (Eq. 13).

2.3 Root mean square vector deviation

To measure the difference in vector fields A and B, a root mean square vector deviation (RMSVD) is defined as:

[ N %
1 2
RMSVD = NZ”AJ-—BJ-”
j=1

) (15)
'1 N M 2
2
= NZZ(%’ — b))
| j=1i=1
The square of the RMSVD can be written as:
N M
,_ 1 2
RMSVD? = sz(a” — b;j)
j=1i=1
M 1 N
2
= Z NZ(“U - bij) (16)
i=1 j=1
= Z RMSD?
i=1

where RMSD; =% ﬂ?’:l(au - bi]-)2 is the root mean square deviation (RMSD) between the i-th paired component of vector

fields A and B. Thus, the RMSVD measures the overall RMSDs of all components between the original vector fields A and
B.
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2.4 Construction of VFE diagram for M-dimensional vector fields

With the aid of Eq. (7), the square of the RMSVD can be written as:

N
RMSVD? = %2”,4,- - 8|’

Jj=1

N
1 2 2
=5 (141" + 18,]" - 24, B,) a
j=1

v v v 1w
2 2 2 2
= a0+ > 1B 2R, [ 4l |5 1Bl
j=1 j=1 j=1 j=1

With the aid of Egs. (1), (2), and (7), Eq. (17) can be written as:

RMSVD? = 12+ 1% — 2R, L,Lg (18)

The RMSVD, L,, Lg, and R, are related by the law of cosines (Eq. 18). We can construct the VFE diagram for M-
dimensional vector fields based on Eq. (18). The VFE diagram and the geometric relationship between L,, Lg, Ry, and the
RMSVD are shown in Fig. 1. As for the case of 2-dimensional vectors (Xu et al., 2016), the RMSLs, i.e., L, and Lg, measure

the mean and variance of the lengths of vector fields A and B, respectively (Egs. A2, A3). R, reflects the pattern similarity
between two vector fields. The RMSVD describes the overall difference between two vector fields. Thus, three statistical

quantities can be indicated by a single point on the VFE diagram (Fig. 1).

3 Multivariable integrated evaluation with the VFE diagram
3.1 Methodology

To evaluate model performance in terms of the simulation of multivariables, one can group various scalar fields into a vector
field and compare the constructed vector field against the observed one using the VFE diagram. For example, we can
construct a vector field with temperature and precipitation as its x- and y-component, respectively. One can certainly use
more variables as needed to construct the vector field. Given the differences in units and order of magnitude of various
variables, we need to normalize all variables before grouping them into a vector field. The normalization can be done by
dividing the RMS value of each observational estimate as follows:

x _ (%) Q2§ AM\ _ % % N -

Aj_(—LM,—LbZ,...,—LbM)_(alj,azj,...,am].), ji=1,2,...,N (19)
w _ (b1 baj bMi\ _ rpx px .y i

B = (BL,22, . 2M0) = (bjj by Big)i 11,2, N (20)
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where L,; = [%Z?’ﬂ bi,-2 is the RMS value for the i-th component of vector field B obtained from observational estimates.

Each component of the normalized vector field is dimensionless and on the order of 1. Thus, the statistics of each component
are equally important to the total statistics of the vector fields. The normalization is especially necessary when the variables
are of different orders of magnitude. For example, the surface air temperature (SAT) is typically on the order of 10> K, but
precipitation is generally on the order of 10°-10" mm s™. Under this circumstance, the differences in the VSC, RMSL, and
RMSVD between various models would be primarily determined based on the SAT and barely impacted by the precipitation
if no normalization was applied. Therefore, in terms of the MV IE of the model performance, the VSC, RMSLs, and RMSVD
should be computed using the normalized vector fields A* and B*. As interpreted in section 2, three statistical quantities in
the VFE diagram represent the overall statistics across all components between two vector fields. If the vector fields are
grouped by various scalar fields, the VFE diagram can summarize the three statistics of model performance in simulating

multiple scalar fields.

3.2 Application of multivariable integrated evaluation of model performance

Without loss of generality, we choose the climatological mean SAT and precipitation as well as the standard deviation of the
SAT and precipitation as the variables to interpret the MVIE method. Four variables derived from climate models are
examined against the corresponding observational estimates. The evaluation is based on the monthly mean datasets derived
from the first ensemble run of CMIP5 historical experiments during the period from 1961 to 2000 (Taylor, 2012). Three
pairs of observed SAT and precipitation datasets are used in this study. The first pair of dataset is the Climatic Research Unit
(CRU) gridded SAT and precipitation (Harris, et al., 2014). The second pair of dataset is the University of Delaware air
temperature and precipitation (Willmott and Matsuura, 2001). The third pair of dataset is composed of the Global Historical
Climatology Network (GHCN) temperature (Fan and van den Dool, 2008) and Global Precipitation Climatology Centre
(GPCC) precipitation (Schneider et al., 2014). All observational data are available at 0.5°x0.5° resolution. We take the
average of three pairs of SAT and precipitation values as the reference data in this study. The observational uncertainty can
be roughly estimated by comparing each observational estimate to the reference data (Xu et al., 2016). All datasets were
regridded to a common resolution of 2.5°x2.5° using a box averaging (bi-linear interpolation) method that re-grids data to a
coarse (finer) resolution. Both the model and observational data are normalized by the RMS value of each observed field

before computing their statistics (Egs. 17, 18).

Table 1 shows the various statistics of 9 CMIP5 models in terms of the climatological mean SAT, precipitation, and the
temporal standard deviation of SAT and precipitation over the global land area (60°S—-60°N). The standard deviation reflects
the amplitude of interannual variation. The models can generally well simulate the climatological mean SAT characterized
by the close correspondence of the RMS values, high uncentered correlation, and small RMSD between the model and

observation. In contrast, models show a relatively poor performance in simulating other variables, i.e., climatological mean

9
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precipitation, standard deviations of SAT and precipitation. These statistics vary from one model to the next. It is difficult to
compare the overall performances of various models because there are too many variables and models to distinguish one
from another (Table 1). It is very useful to summarize the statistics of multiple variables with fewer indices, which enables
an objective evaluation of the overall model performance in simulating multiple variables. To achieve this goal, we first
normalized the modeled and observed climatology for summer SAT and precipitation and the temporal standard deviations
of the SAT and precipitation (Egs. 17, 18). Second, the four normalized scalar fields are grouped into a four-dimensional
vector field. Third, we computed the statistical quantities RMSL, VSC, and RMSVD statistical quantities with the four-
dimensional vector fields derived from model and observational data. As interpreted in section 2, the RMSL (RMSVD)
measures the overall RMS values (RMSDs) of all scalar fields (Egs. 3, 16). The VSC represents the weighted average of
uncentered correlation coefficients across all scalar fields (Eg. 13). Thus, the model performance in simulating multiple
variables can be summarized by three statistical quantities. Lastly, the three quantities, i.e., RMSL, VSC, and RMSVD, can
be represented by a single point for each model on the VFE diagram. The single point is determined by 12 statistical
quantities (4 variables x 3 statistics) those derived from various scalar fields (Table 1). Thus, each point on the VFE diagram
can represent the overall performance of an individual model in terms of 3 statistical quantities derived from multiple scalar
fields (Fig. 2).

As shown in Fig. 2, the VSC varies from 0.90 to 0.95, indicating which models can better reproduce the overall spatial
pattern of various variables and which cannot. For example, model 1 shows the maximum VSC, indicating that model 1 can
generally better reproduce the spatial pattern of the four variables relative to other models. This can be confirmed by Table 1.
The uncentered pattern correlation coefficients for the four scalar fields are generally higher in model 1 than in the other
models. Fig. 2 also clearly shows which model overestimates or underestimates the overall RMS values. For example,
models 5 and 7 overestimate the RMSLs of the four-dimensional vector fields, suggesting that both models generally
overestimate the RMS values of the four scalar fields. This can also be confirmed by Table 1, as model 5 clearly
overestimates the RMS values of Ta (1.42) and Pa (1.16) and slightly underestimates the RMS values of Tm (0.99) and Pm
(0.94). Model 7 overestimates all RMS values (1.08, 1.10, 1.11, and 1.07) of the four variables. Thus, the RMSL of a
constructed vector field can reasonably represent the overall performance of a model in reproducing RMS values of multiple
scalar fields. In contrast, model 9 clearly underestimates the RMSL of the vector field (Fig. 2). Correspondingly, three out of
the four RMS values of scalar fields are smaller than 1 for model 9 (Table 1). Similarly, the RMSVD between two vector
fields can also reasonably represent the overall RMSDs of multiple scalar fields as shown in Fig. 2 and Table 1. Thus, one
can evaluate the model performance in simulating multiple variables with three statistical quantities. The three statistical
quantities represent different aspects of model performance, the knowledge of which can provide a more comprehensive
model evaluation. The VFE diagram can clearly illustrate to what extent the overall RMSDs of various scalar fields
(represented by the RMSVD) are attributable to the systematic difference in RMS values (represented by the RMSL) and

how much is due to the poor pattern similarities (represented by R,).

10
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Model performance changes monotonically with the increase in the correlation coefficient (decrease in the RMSD) if the
other statistical quantities remain unchanged. Unlike the correlation coefficient and RMSD, model performance does not
change monotonically with the increase or decrease in RMS values. Specifically, model performance improves as the
normalized RMS values approach 1 but decreases as the normalized RMS values approach either zero or infinity. As defined
in Eq. (3), the RMSL is equal to the sum of RMS values of all components of a vector field. Thus, RMSL=N, i.e., the
modeled RMSL is equal to the observed one, does not necessarily suggest that the model well reproduces the RMS values of
various scalar fields. This conclusion may also result from the cancellation between the overestimated and the
underestimated RMS values. For example, as shown in Table 1, model 3 overestimates the RMS values of Tm (1.06) and Ta
(1.27) but underestimates the RMS values of Pm (0.81) and Pa (0.79). However, the RMSL is consistent with the
observational estimate (1.00). Under such a circumstance, the RMSL misrepresents the model performance in simulating
RMS values of various scalar fields. To mitigate this shortcoming, one can add a line segment centered at each plotted point
along the azimuthal direction (Fig. 3). The length of the line segment is equal to the standard deviation of RMS values of
multiple scalar fields. Thus, the length of the line segment can measure the dispersion of various RMS values relative to their
mean. A shorter line indicates that the RMS values are close to the mean. In contrast, a longer line segment indicates that the
RMS values are spread out over a wider range. To measure the accuracy of modeled RMS values to that of those observed,

one can use the root mean square deviation of the RMS values of various variables:
1 M
RMSD? = MZ(L;L- —L;)? (21)
i=1

1 1

where L}, = — ;Z?':l a;j? and Ly; = Li [%Zj.vzl bij2 are the RMS values of the i-th normalized component of vector
bi bi

fields A and B, respectively. With the support of Eq. (6), we have L}, = 1 for all i (1 <i <M). The RMSD? can be further

written as:

M
RMSD2=l L. —1)2
L M (az )

i=1

M M
=lZL*-2—EZL*-+1
M' at M at
i=1 i=1
I, 2 (22)
=MZ(L3+L;i) —2I5 +1
i=1

M
R R
=T +M2Lai — 205 +1
i=1

= (Ly — 1) + 0fus
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where L%, and L?,;" are the mean and anomaly of L, respectively. The mean square value of L, is written as follows:

M
1 2
U}%MS = M Ly (23)

i=1

aiys can also be interpreted as the centered mean square value or the variance of Ly;. Thus, the RMSD, can be interpreted as
the mean error plus the variance of RMS values of normalized scalar fields (Eq. 22). RMSD, measures the overall deviation
of modeled RMS values from the observed ones. The modeled RMS values of various scalar fields are exactly equal to the

corresponding observed ones only when the RMSD, is equal to 0.

3.3 Multivariable integrated evaluation index for model performance

In general, the model results get closer to the observational estimate as the RMSVD decreases. It is noteworthy that for a
given VSC at a relatively low value, the RMSVD does not strictly decrease monotonically as the simulated RMSL
approaches the observed one (Fig. 4). For example, model B shows the same VSC as that of Model A but a smaller bias in
the RMSL, which suggest that model B performs better than model A. However, the RMSVD is greater in model B than in
model A (Fig. 4). Thus, the decrease in the RMSVD may not necessarily indicate an improvement in model performance. On
the other hand, given the drawback of the RMSL in measuring the accuracy of RMS values, the model skill score, defined
based on the RMSL and VSC in Xu et al. (2016), is also not well suited for measuring the model performance in simulating
multiple scalar fields. To better measure model performance, we define a multivariable integrated evaluation index (MIEI)
based on the VFE diagram (Fig. 4):
MIEI? = BC? + BG*
Based on the law of cosines, we have
BG? =2 — 2R,
Thus, the MIEI can be written as:
MIEI? = RMSD? + 2(1 —R,)

= ofys + (E‘ 1)?+2(1-R,)
Clearly, the MIEI takes both the amplitudes and pattern similarities of various variables into account and therefore can

(24)

provide a comprehensive evaluation of model performance (Eg. 24). In comparison with the RMSVD, the MIEI satisfies the
monotonic property of an index with respect to model performance. Specifically, for any given oz, and L%, the MIEI
decreases monotonically with the increase in R,. For any given og,s and R,, the MIEI decreases monotonically as Lf
approaches 1. For any given L}, and R,, the MIEI decreases monotonically with the decrease in ag,,s. The MIEI is equal to 0
only when a,,s=0, L;=1, and R,=1, which define a perfect model. In other words, modeled multiple fields are exactly the
same as the observed ones when the MIEI is equal to 0.

12
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As interpreted in section 2, the RMSVD is determined based on the sum of quadratic RMSDs of various scalar fields (Eq.
16). Thus, the RMSVD is equivalent to the model climate performance Index used in previous studies (e.g., Gleckler et al.,
2008; Radi¢ and Clarke, 2011; Chen and Sun, 2015). In general, both the RMSVD and MIEI can be used to measure the
model performance. However, the MIEI is expected to provide a more accurate evaluation of model performance than the
RMSVD. For example, model 3 shows a smaller RMSVD but a larger MIEI relative to model 2 (Table 1, Fig. 3). The
RMSVD and MIEI give an opposite rank in the performances of models 2 and 3. Note that model 3 shows a much greater
standard deviation of RMS values (0.23) than that of model 2 (0.07), suggesting that model 3 poorly simulates the relative
amplitude of the four variables. Such information is not considered by the RMSVD but can be captured by the MIEI (Eq. 21).
The values of the MIEI derived from various models are also shown in Fig. 3. A smaller MIEI generally indicates a better
performance of the climate model. For example, models 1 and 6 show smaller MIEIs than those of other models. Models 1
and 6 show higher VSC values, smaller RMSD, values, and a close correspondence between RMS values relative to the
observed ones (Fig. 3). The MIEI can serve as an index to determine the rank of climate model performance in simulating
multiple fields. In comparison with the MIEI, the VFE diagram can provide more comprehensive statistics on the model

performance, i.e., pattern similarity, RMS values and their variances, and RMSVD.

4 Summary and discussion

The multivariable integrated evaluation (MVIE) method proposed here provides a way of representing the statistics of
multiple fields with a single point on a two-dimensional plot, i.e., the VFE diagram. The VFE diagram includes three
statistical quantities, i.e., RMSL, VSC, and RMSVD, representing different aspects of model performance, and therefore can
provide a more comprehensive evaluation. Specifically, the RMSL (RMSVD) represents the total mean value and variance
(total RMSDs) of all scalar fields. The VSC measures the overall pattern similarity across all scalar fields. As shown in the
example, each of the three statistical quantities can reasonably represent the corresponding statistics of multiple scalar fields.
Therefore, the VFE diagram can illustrate how much the overall RMSD of various fields is attributable to the difference in
RMS values and how much is due to poor pattern similarity. Thus, one can summarize multiple statistics of multivariables
for various models in a diagram and facilitate the intercomparison of model performances in simulating multiple variables.
The MVIE method can be applied to spatial or temporal fields. It can also simultaneously evaluate various temporal
variabilities simulated by models, e.g., climatological mean state and the amplitude of interannual variability as shown in
section 3.2. Based on the VVFE diagram, we also developed a multivariable integrated evaluation index (MIEI) which takes
the amplitude and pattern similarity of multiple fields into account. The MIEI satisfies the criterion that a model performance
index should vary monotonically as the model performance improves. The MIEI provides a more concise evaluation than the
VFE diagram of model performance in simulating multiple fields.
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The statistical metrics presented in this paper can be divided into three different levels and their relationships are
summarized in a pyramid chart (Fig. 5). The first level of metrics, i.e., correlation coefficient, RMS value, and RMSD,
measures model performance in terms of individual variables. These metrics can be illustrated by a table of metrics (Table 1)
or a portrait diagram, which can provide detailed information on model performance in simulating individual variables but
cannot give a quantitative evaluation of the overall model performance in simulating multiple fields. The second level of
metrics, i.e., the VSC, RMSL, variance of RMSL, and RMSVD, are derived from the first level of metrics and represent the
overall statistics of multiple variables. The second level of metrics can be presented as a VFE diagram, which provides an
integrated evaluation of model performance in terms of simulating multiple fields. The MIEI belongs to the third level of
metrics, which is defined based on the VVFE diagram. The MIEI further summarizes the three statistical quantities of the VFE
diagram into a single index and can be used to rank the performances of various climate models. A higher level of metrics
provides a more concise evaluation of model performance compared to a lower level of metrics, which facilitates model
intercomparison. Unavoidably, a higher level of metrics loses detailed statistical information in contrast to a lower level of
metrics. To provide a more comprehensive evaluation of model performance, one can show the VFE diagram together with a

table of statistical metrics (Table 1) or other model performance metrics as needed.

As shown in section 2, the VFE diagram can be constructed by using uncentered statistics, which are computed using the full
scalar fields, including both mean and anomaly. The VFE diagram can also be computed by uing centered statistics
(Appendix A). The centered RMSL of a vector represents the overall variance of all components of a vector field (Eq. A2).
The centered VSC can be interpreted as weighted Pearson’s correlation coefficients, which measures the overall pattern
similarity across all paired anomaly fields (Eq. A7). The centered RMSVD is equal to the sum of centered RMSDs across all
paired components between two vector fields. The type of statistics, i.e., centered or uncentered statistics, that should be used
depends on the application. The uncentered statistics should be used if both the mean and anomaly need to be evaluated. In
contrast, the centered statistics should be used if the anomaly fields are the primary concern. The centered correlations alone
are not sufficient for detection studies (Legates and Davis, 1997). It has been argued that the uncentered statistics are better
suited for detection because they incorporate the response of the mean value. In contrast, the centered statistics are more
appropriate for attribution because they better measure the similarity between spatial patterns (Hegerl et al., 2001). The VFE
diagram provides us flexibility in model evaluation. In terms of model evaluation aimed at a detection study, one can
compute three uncentered statistics with full fields. In contrast, one can use centered statistics by computing three statistical

quantities with anomaly vector fields if an attribution study is the major concern of model evaluation.

In practice, one may want to weight different fields based on their relative importance. Determining the weight coefficient
depends on the application and therefore is beyond the scope of this study. Here, we only discuss how the weight can be
considered in the multivariable integrated evaluation. The MVIE method presented in this study requires the normalization

of each modeled and observed variable by dividing the corresponding RMS value of the observed variable (Egs. 19, 20).
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Therefore, one should weight different variables after the normalization (Egs. B1, B2); otherwise the normalization process
will remove the weight coefficient. Weighting each normalized field leads to a quadratic weighting of the quadratic RMS
values, quadratic RMSDs, and correlation coefficient (Egs. B1, B6, B10, B13).

The VFE diagram and MIEI may also provide some guidance in weighting various climate models to constrain future
climate projection. A recent study suggested that model weighting should take both model performances and model
interdependencies into account to improve climate projections (Knutti et al., 2017). The VFE diagram proposed in this paper
can summarize model performances in terms of multiple statistics of multivariables on one hand. On the other hand, the VFE
diagram can also clearly show the differences between model and observation as well as the differences between various
models. These information provided by the VFE diagram may be used in weighting climate models, which warrant for
further studies.

Code availability

The code used in the production of Figure 3 and Table 1 are available in the supplement to the article.
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Appendix A: Decomposition of RMSL, VSC, and RMSVD

To further interpret the RMSL, VSC, and RMSVD, we break down the full vector fields A and B into the mean and anomaly:

A=A+ A = (a, +ay;, T§+ay, .0y +ay,;);

B}-=§+B' (b, + b} b2+b2',,"',5m+b1’nj);

1j

where

A= (a,ay,an),
B = (by, by, by),
A5 = (ay;, a0, any),

(blj’ 2jr" "brlnj)'

— 1

ai:;wﬂau; i=1,2 ...M
1 . o
~ Zj=1 bij; i=1,2,...M
ajj = a;; — a; i=1,2,...M
bi; =bi}'_Ei; i=12..,M

The RMSL of vector field A is written as follows:

1 N
2
L = NZIIA,-II
sz(a +ap)’

j=1i=
_ 1
SHONEEDPRREIPED
j=1i= j=1i=1 j=1i=

Given )., ai; =0, L,? can be written as:

N M N M
1 1 2
NZZ % +NZZ“U
j=11i=1 j=1i=1
1 —2 1 12
=NZ||A|| wZ“Af”
j=1 j=1
=L%+Lir
where

i=1,2, ...
i=1,2, ...
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—_ 2
L= (s lar)” = 1a) = i, a2

1/2
is the RMSL of the mean vector field, and L,/ = (% j?’=1||A}||2) is the RMSL of the vector anomaly field.

Equation (Al) can be reorganized as:

M 1 N M 1 N M
—2 , 2 _2
LA2 = Z NZ a; |+ Z NZ a;; 1= Z(ai + Gai’z) (A2)
i=1 j=1 i=1 j=1 i=1
where
1 ;2 1/2. -
Jai'=(; N al, ) , i=1,2, ..M

is the centered RMS value (or standard deviation) of the i-th component of vector field A. L, is the RMSL of vector field A
which measures the overall mean value and variance of all components of the vector field.

Similarly, we have
—2
Ly =L%+12% = Z(bi +0,%) (A3)
i=1
where
1 , 2\/2 .
=(3Zaby’) i=1,2,..,M

is the centered RMS value (or standard deviation) of the i-th component of vector field B.
With the support of Eq. (13), the VSC can be written as:

Ro= NI ZZ(a +a;,)(b; +b);)

j=1i=

L;iLg LyrLgr
_ b BR,7+ A'5B )
LyLg LyLg

Given that ), a;; = ¥¥_, bj; = 0 forall i (1 <i<M), we obtain

1 M N N
Ro=yr | Q@b+ + ) aib
Y NLyLg &\ £ —
i=1 \j=1 j=1 (A4)
Lilg LoL.s
=L et LALB v’
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where
N M M
1 = 1 -
Rﬁ = ZZ aibi = Z aibi (A5)
NLALE j=1i=1 LALE i=1
Ry =51 ,Z Z a;;bi; (A6)
NL,/Lg —

Given the Cauchy-Schwarz inequality, Eqg. (A5) can be rewritten as:

_ =2 ~
(Z{Vil aibi) Lat 2y1b12 Li’Lg”

RZ = —< — = >=1
(LaLp) (Lilg)*  (Lalg)
R; reaches its maximum value of 1 when % = % == ;—m > 0. In contrast, R; reaches its minimum value of -1 when
1 2 m
% =% == g—m < 0. R; measures the extent of correlation between modeled and observed mean values across all
1 2 m

components of two vector fields.

Eqg. (A6) can be rewritten as:

ZZ a b,
14 Q0 1
v NLA’LB’ 0qi'Opi! Tai’ Tbi
M N
ZZ a b,
IO‘ i
NLA,LB, oy ol
i=1 j=1

1
§ l] l]
10
LA’LB’ < Tai’Oi! N 04i'Opi’
0,:10,:1T;
bi' 't
L 1L /Z al
A"~B

i=1

(A7)

where g,,; and g, are the centered RMS values (or standard deviation) of the i-th component of vector field A and B,
respectively. r; represents the centered correlation coefficients between the i-th paired components of vector fields A and B.
R,/ can be interpreted as a weighted average of the correlation coefficients across all paired components between two vector
fields. The weight coefficients are proportional to the product of standard deviations between paired variables. Clearly, the
VSC is simultaneously determined based on the correlation of various mean fields and the overall correlation of anomaly
fields across all paired components between two vector fields (Egs. A4, A5, A7).

The RMSVD between two vector fields can also be represented by the mean and anomaly fields:
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a2l 12|A' B
j=1 j=1

= B5I? 1 C ’ 12
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The RMSVD between two vector fields is determined based on the differences in mean vector fields plus the RMSVD of the

anomaly vector field. RMSVD? can further be written as:

N
RMSVD? = [A—B| += Z|A’—B|
j=1
M
ZZ(ai_b) += Zz(a”_bl})
i=1 j=1i=1
M M 1 N (Ag)
— 732 ’ 1 \2
= Z(al - bi) + Z NZ(aU bu
i= i=1 j=1
M M
- Z(al ~B)"+ Z RMSD;?
i=1 i=1
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where RMSD; is the centered RMSD between the i-th paired components of vector fields A and B. From the viewpoint of
MVIE, the RMSVD can be interpreted as the overall mean difference of all fields plus the overall RMSD of all anomaly
fields.

5 The statistics can be computed based on the full vector fields or anomaly vector fields depending on the concern of
evaluation. The statistical quantities, i.e., RMSL, VSC, and RMSVD, computed based on the full vector fields represent the
uncentered pattern statistics, which include the statistics from both the mean and anomaly fields. Alternatively, three
statistics can also be computed based on the anomaly fields, yielding centered statistics, which only measure the anomaly
fields. The full vector fields should be used if both the mean and anomaly need to be evaluated. In contrast, the anomaly

10 wvector fields should be used if anomaly fields are the primary concern.
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Appendix B: Weighted multivariable integrated evaluation with VFE diagram

In terms of model evaluation, one may care for some variables more than other variables, although all variables are of great
concern. In such a circumstance, it would be useful to weight different variables to make the VSC, RMSL, and RMSVD
more sensitive to some variables than to others. Without loss of generality, the weighted- and normalized-vector fields A%
and B" can be written as a pair of vector sequences:

AY =w-Af = (W aj;, a3, ..., Wy Ay ;); j=1,2,...,N (B1)

W = w: B} = (wy b, wyb3;, .., wybyy;)i  i=1,2,...,N (B2)

where aj; and b;; are the same as in Egs. (19) and (20). w; is the weight coefficient for the i-th component of the vector field

and satisfies the constraint.

M
ZWL' =M
i=1

Note that the weighting should be applied to the normalized model and observational data (Eqs. B1, B2). Otherwise, the
normalization would remove the weight coefficient. Based on Eq. (3), the square of the RMSL of the normalized vector field

A* can be written as follows:
M

LP =) L (83)
i=1

* 2

1/2
where L}, = (1 aa ) denotes the RMS values of the i-th component of the normalized vector field A*. Similarly, the

N&I=
RMSL of weighted- and normalized-vector fields can be written as follows:

M

= Z L,(,lviz (B4)

i=1
1/2
LY, = (% 9’=1 wiza;jz) is the RMS value of the i-th component of vector field A¥. With the support of Egs. (B1), (B3),

and (B4), it is easy to obtain

M M
b= = Sy 2
i=1 i=1

The RMSL of vector field A" is determined based on the weighted RMS values across all components of the vector field.

The contribution of the i-th RMS value, L}, to the quadratic RMSL of the vector field is weighted by w?. The RMS value
accounts for more of the RMSL when its weight coefficient is greater.

Based on Eqg. (16), the square of the RMSVD between normalized vector fields A* and B* can be written as follows:
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RMSVD*? = Z RMSD}? (B6)

i=1
1/2
where RMSD; = (% ’}’=1(ai*j —bj; 2) is the RMSD of the i-th paired components between normalized vector fields A*
and B*. Similarly, the square of the RMSVD between weighted vector fields A¥ and B can be written as follows:
RMSVDW? = Z(RMSD;”)Z (B7)
i=1
1/2
RMSDY = (% 9'=1(Wiai*j — w;bj; 2) is the RMSD of the i-th paired components between weighted vector fields A" and
BY. With the aid of Egs. (B1), (B2), (B6), and (B7), we obtain
(RMSVDY)? = Z(lrezwspv’)2 Z w2RMSD}? (B8)

i=1 i=1

The RMSVD between two vector fields is determined based on the weighted RMSDs across all paired components of two

vector fields. The contribution of the i-th RMSD to the quadratic RMSVD between two vector fields is weighted by w?.

Based on Eqg. (13), the VSC between normalized vector fields A* and B* can be written as follows:

1 M
R; L* L* Zl O-bLR* (Bg)
N Loy «2\? N Ton g2)\Y? . . .
where ¢}; = (— J=147 ) and g; = (NZ] 1bjj ) are the RMS values for the i-th modeled and observational fields.
ZN * *
R;, = % is the uncentered correlation coefficient for the i-th components between two vector fields. Similarly, the
a19p1

VSC between weighted fields can be rewritten as:

M
1
Rl‘;V = Lw . LWZ CTbLRW (BlO)
4 TBim
where ¢}, op7, and R}); are the same as o;, o,;, and R;;, respectively, except they are computed based on the weighted

vector fields AW and B"W. With the aid of Egs. (B1), (B2), (B9), and (B10), we obtain

1‘;/ = Lw LWZW Ualabl ui (Bll)

The VSC is determined based on the sum of the products of the uncentered correlation coefficients and the RMS values. The

contribution of the i-th product term, a,;0;,; R,;, to the VSC is weighted by w?.
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Tables

Table 1. Multiple statistics of CMIP5 model in simulating surface air temperature and precipitation in terms of
climatological mean state and interannual variability. Tm (Pm): climatological mean surface air temperature (precipitation)
in summer. Ta (Pa): standard deviation of summer surface air temperature (precipitation). RMS: the ratio of modeled to
observed root mean square (RMS) values of the spatial pattern for each variable. corr (RMSD): uncentered spatial
correlation coefficient (root mean square deviation) between model and observational fields. RMSL, Rv, RMSVD measure
the statistics of two vector fields, which can represent the overall statistics of all fields (Egs. 11, 14, 21). RMSL was shown
as the ratio of model simulated RMSL to the observed RMSL. RMS_stddev is the standard deviation of four RMS values,
which describe the dispersion of RMS values of Tm, Pm, Ta, and Pa. MIEI: multivariable integrated evaluation index.
Model performance is indicated by the color scale: lighter colors denote better model performance.

=y By
RMS % CORR o RMSD % lg rgn
Pm|{Ta|Pa| ™ |Tm|Pm| Ta | Pa Tm |Pm | Ta | Pa é & | -
Model 1 | 1.01(1.00|1.15]|0.98{1.04|1.00|0.92|0.96 33| 0.
Model2 (1.04({1.00(1.16(1.03(1.06|0.99 0.94
Model 3 |1.06 [ 0.81 27 0.99 0.95
Model 4 |0.97 1.00 0.96
Model 5 |0.99 0.99 0.95
Model 6 |1.06 0.8 1.00 0.96
Model 7 |1.08 1.11(1.07 (1.09]0.99 0.95

0.96
0.94

Model 8 | 1.01{0.99|1.11|1.00|1.03|1.00
Model 9 | 0.92|0.93|1.00 0.890.99
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Captioned Figures
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Figure 1: VFE diagram for displaying multiple statistics of two vector fields. The vector similarity coefficient between two

vector fields is given by the azimuthal position of the test field. The radial distance from the origin is proportional to the
RMS length. L, and Lg represent the RMS lengths of the test and reference vector fields, respectively. The RMSVD

between the test and reference fields is proportional to their distance apart (dashed contours given in the same units as

those for the RMS length).
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RMS Vector Length (Normalized)
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Figure 2: VFE diagram describing the normalized climatological mean SAT, precipitation, and interannual variabilities

of SAT and precipitation over a land area between 60°S—-60°N simulated by 9 CMIP5 models compared with three pairs
of SAT and precipitation data observed during the period from 1961 to 2000. The RMS length and the RMSVD have been

normalized by dividing the RMS length derived from the observed data.
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Figure 3: Same as in Figure 2, except the standard deviations of the RMS values of various fields are shown as line

segments. The value of the MIEI for each model is also shown in the diagram.
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Figure 4: Schematic diagram displaying the relationship between the RMSVD, RMSD,, and MIELI. The points A, B, and
D represent different models. The RMSD_ measures the overall difference between the modeled RMS values and the
observed ones. The line segment BC is vertical with respect to the VFE diagram. The length of line segment BG is
determined based on the vector field similarity, which measures the overall pattern similarity of various scalar fields
relative to the observed ones. Thus, the MIEI index takes both the pattern similarity and the RMS values of various scalar

fields into account.
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Summarizing
multivariable
and multiple
statistics

VFE diagram:
multivariable
integrated
statistics
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Figure 5: Pyramid chart showing the relationship between three levels of metrics. The first level of metrics, i.e., correlation
coefficient (R), RMS value, and RMSD, measures the model performance in terms of individual variables. The second level of
metrics, i.e., VSC, RMSL, variance of RMS values (afms), and RMSVD, is derived from the first level of metrics and summarizes

the overall performance of a climate model in simulating multiple fields. The MIEI further summarizes the VSC, RMSL, and

o5 into asingle index to rank various climate models in terms of simulating multiple fields.
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